Cytosolic thiol switches regulating basic cellular functions: GAPDH as an information hub?

نویسندگان

  • Thomas Hildebrandt
  • Johannes Knuesting
  • Carsten Berndt
  • Bruce Morgan
  • Renate Scheibe
چکیده

Cytosolic glyceraldehyde 3-phosphate dehydrogenase (GAPDH, E.C. 1.2.1.12) is present in all organisms and catalyzes the oxidation of triose phosphate during glycolysis. GAPDH is one of the most prominent cellular targets of oxidative modifications when reactive oxygen and nitrogen species are formed during metabolism and under stress conditions. GAPDH harbors a strictly conserved catalytic cysteine, which is susceptible to a variety of thiol modifications, including S-sulfenylation, S-glutathionylation, S-nitrosylation, and S-sulfhydration. Upon reversible oxidative thiol modification of GAPDH, glycolysis is inhibited leading to a diversion of metabolic flux through the pentose-phosphate cycle to increase NADPH production. Furthermore, oxidized GAPDH may adopt new functions in different cellular compartments including the nucleus, as well as in new microcompartments associated with the cytoskeleton, mitochondria and plasma membrane. This review focuses on the recently discovered mechanism underlying the eminent reactivity between GAPDH and hydrogen peroxide and the subsequent redox-dependent moonlighting functions discriminating between the induction either of adaptive responses and adjustment of metabolism or of cell death in yeast, plants, and mammals. In light of the summarized results, cytosolic GAPDH might function as a sensor for redox signals and an information hub to transduce these signals for appropriate responses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Human Thioredoxin System: Modifications and Clinical Applications

The thioredoxin system, comprising thioredoxin (Trx), thioredoxin reductase (TrxR) and NADPH, is one of the major cellular antioxidant systems, implicated in a large and growing number of biological functions. Trx acts as an oxidoreductase via a highly conserved dithiol/disulfide motif located in the active site ( Trp-Cys-Gly-Pro- Cys-Lys-). Different factors are involved in the regulation of T...

متن کامل

Glutathionylation of cytosolic glyceraldehyde-3-phosphate dehydrogenase from the model plant Arabidopsis thaliana is reversed by both glutaredoxins and thioredoxins in vitro.

Plants contain both cytosolic and chloroplastic GAPDHs (glyceraldehyde-3-phosphate dehydrogenases). In Arabidopsis thaliana, cytosolic GAPDH is involved in the glycolytic pathway and is represented by two differentially expressed isoforms (GapC1 and GapC2) that are 98% identical in amino acid sequence. In the present study we show that GapC1 is a phosphorylating NAD-specific GAPDH with enzymati...

متن کامل

Highlight: dynamics of thiol-based redox switches.

Four years ago the German Society for Biochemistry and Molecular Biology (GBM) established a study group dedicated to ‘Redox Biology’. Members of this group subsequently launched a research network on ‘Dynamics of Thiol-based Redox Switches in Cellular Physiology’, now funded by the German Research Council (DFG) as a priority program (for further information see: www.thiolswitches.de). Within t...

متن کامل

Thiol-based redox switches in eukaryotic proteins.

For many years, oxidative thiol modifications in cytosolic proteins were largely disregarded as in vitro artifacts, and considered unlikely to play significant roles within the reducing environment of the cell. Recent developments in in vivo thiol trapping technology combined with mass spectrometric analysis have now provided convincing evidence that thiol-based redox switches are used as molec...

متن کامل

Human Fibroblast Switches to Anaerobic Metabolic Pathway in Response to Serum Starvation: A Mimic of Warburg Effect

Fibroblasts could be considered as connective tissue cells that are morphologically heterogeneous with diverse functions depending on their location and activity. These cells play critical role in health and disease such as cancer and wound by Production of collagen, fibronectin, cytokines and growth factors. Absence of insulin and other growth factors in serum deprivation condition and similar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biological chemistry

دوره 396 5  شماره 

صفحات  -

تاریخ انتشار 2015